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Abstract— The studies of the electrical system need to assess 

the output of the power system at development phase as well as 

daily situations. This paper presents fault current study of a 

220KV grid station at the standard of IEC 60909 and IEC 61363. 

In order to support the power system, fault current study can be 

done at design & development phase to conclude the system 

design, determine voltage magnitude, shielding apparatus, 

circuit breakers, conductor length, step up and step-down power 

equipment and solid grounding. A grid station is simulated using 

real system facts and Figures in the ETAP software and fault 

current analysis is executed at different voltage levels. With the 

help of results achieved from the simulations, it is likely to assess 

the dynamic pressure yield to the equipment of the power system 

in the existence of faults. However, evaluation of installed 

apparatus in the situation of power system enhancement that 

can significantly influence the fault current level. The study 

shows the significance of the symmetrical and asymmetrical 

fault currents investigation for the description of the apparatus 

rating, which must upkeep these currents. 

 

Index Terms—Fault Current Study; ETAP; IEC 60909; IEC 

61363. 

 

I. INTRODUCTION 

 

The grid station studies predominantly lie on the methods 

used for size and selection of apparatus and enhance /estimate 

the outcome of a standing or proposed power system under 

the stated situations. As compare to other essential power 

network topics, Short Circuit (SC) topics are the most 

important as compared to other fundamental power system 

studies [1]. Third world countries are facing severe energy 

crisis due to which forced load shedding is done on the 

substation side. Due to this rapid switching process, 

instruments are losing their strength with the passage of time. 

On the other side, electricity demand is increasing day by day, 

so it is the time to change the old equipment rating into a new 

equipment rating of the substation. This can only be done by 

offline grid Short Circuit analysis compliance to International 

Electrotechnical Commission (IEC)-60909 and (IEC)-61363. 

In Short Circuits, the system contains large magnitude of 

currents which are too much higher than load currents. For 

short circuit analysis of electrical grid, it can broadly classify 

as [2]: 

 

 

• Three phase Short Circuit or Symmetric fault 

•  Asymmetrical fault 

 

The consequences of these Short Circuit current study 

depend upon the type and duration of fault which determines 

various characteristics of Short Circuit, three-phase, line-to-

line, line-to-line-to-neutral and line-to-neutral. All major 

sources of fault currents should be represented in Short 

Circuit calculation model. The key fault current sources are 

lumped load (both Static load and motor load) and utility/grid 

supply. 

In this paper, the short circuit response of the 220KV grid 

station has been analyzed for various fault conditions at 

different fault locations using ETAP for the offline grid 

monitoring purpose. Since ETAP is the most effective and 

user-friendly tool to perform the power system studies [8], it 

has been chosen in this paper to simulate the grid station. IEC 

60909 and IEC 61363 standards are used to analyze the Short 

Circuit behavior of the system. The results of short circuit 

studies identify the value of sub-transient, transient and 

steady state currents and these faults current magnitude are 

valuable to find out network arrangement, network voltage 

profiles, shielding apparatus, circuit breakers, conductor 

length, step up and step-down power equipment and solid 

grounding. 

Renuka et al. [1] presented a fault current analysis of an 

industrial distribution system in compliance to IEC60909. 

The fault current studies should be performed at scheduling 

phase as well as operating situations has been purposed. 

ETAP software for the evaluation of different faults in 

industrial supply system has been used. 

The Short Circuit analysis conducted in Komag Sarawak 

Operations (KSO) has been discussed. The factory to re-

examine the protection system and enhance the system’s 

dependability has been investigated. It has been decided to do 

so because the current power system was very old and never 

revised before. ETAP for reconsideration of the power system 

has been used [2]. 

A power system has been considered which is 

interconnected with different types of distributed generators. 

IEC 60909 standard to calculate the consequential fault 

magnitude for the medium and low voltage system has been 

applied [3]. 
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A dynamic and standard based calculation of Short Circuit 

currents has been given using different approaches. The 

approaches have been compared, offered by ANSI/IEC 

standards for current fault analysis at different voltage levels. 

They compared the calculated results with EMTP software 

results [4]. 

The pattern of IEC 60909 has been explained and purposed 

that in this standard for the exact place, period highest and 

lowest potential fault current has been driven. That has been 

reported using a sequence of factors which relate to the 

evaluated fault current of apparatus and the tests required on 

apparatus to prove that evaluation [5].  

A typical 2×30 MW thermal power plant has been taken to 

analyze the fault current study, using electrical transient 

analyzer program (ETAP) software. Fault current analysis 

based on American National Standards Institute (ANSI) - 

C37 and International Electrotechnical Commission (IEC) 

60909, IEC 61363-1 standards has been performed. The 

symmetrical and unsymmetrical faults at different locations 

in the power plant have been evaluated and also investigated 

the effect of fault location on the Short Circuit response [6]. 

The expected fault currents of the test equipment have been 

simulated and computed. The model after calculating the 

impedances of the test system has been created. The 

influencing aspects have been analyzed, which distinguish 

the actual yield current from the predictable value, using the 

computed calculation results. For the enhancement of new 

test tool, the results offer a theoretical basis [7]. 

In the network, Short Circuit can’t be permanently avoided, 

but at the time of design and development, its impact can only 

be minimized by keeping in view its penalties on the network. 

The network equipment’s, step up and step-down power 

equipment, conductors, circuit breakers, shielding apparatus 

etc need to be considered and designated to have to unbalance 

resistive competency to match network maximum unbalance 

current AC value.  

These faults are analyzed and represented by modeling 

220KV electrical power grid. In a power network, Short 

Circuit generates large-scale currents which are several times 

larger than normal load currents. Therefore, Short Circuit 

current need to be calculated at each voltage level for 

determining the characteristics of the equipment required to 

withstand the fault. 

 

II. SHORT CIRCUIT ANALYSIS 

 

The substation is normally a multi-appliance system 

because it contains both industrial and domestic load. 

Industrial loads are much considerable because they have 

feasibly more than one generator and many electric motors, 

all interlinked with transformers, lines and cables. The 

utility/grid generally demonstrated a continuous voltage 

source along with equivalent impedance. The AC factor is 

constant for the abnormal current distributed by utility/grid as 

presented in Figure-1, due to the greater impedances of the 

transformers, connecting lines and cables having reasonably 

constant and large values. Induction motor and synchronous 

machine delivered an abnormal current which reduces with 

time until a normal magnitude is approached. The AC factor 

of fault current delivered by the utility is also presented in 

Figure 1. 

In fault current studies, two kinds of fault currents must be 

considered: 

 

• The peak/maximum fault current Ip which decides the 

capability of the electrical equipment. 

• The steady-state/minimum fault current IK which is 

essential for the setting of switchgear. 

 

 
 

Figure 1: AC component of fault current. 

 

There are several methods to do Short Circuit analysis: the 

impedance method, the conventional method, the 

composition method, all these methods can calculate fault 

current for low voltage power system, but IEC 60909 method 

can be used up to 550KV [5]. Power system using IEC 60909, 

IEC 61363 standards the Short Circuit study is executed in 

ETAP for 3-phase fault, line-to-neutral (L-G) fault, line-to-

line (L-L) fault and line-to-line-to-neutral (L-L-G) fault and 

𝐼𝑘
′′ (initial AC symmetrical fault current), 𝐼𝑃 (peak fault 

current) and 𝐼𝑘 (steady-state fault current) is determined [6].    

𝐼𝑘
′′ is the rms value of initial AC symmetrical fault current is 

calculated by Equation (1). 

 

𝐼𝑘
′′ =

𝑐𝑈𝑛

√3|𝑍𝑘|
   (1) 

 

where 𝑍𝑘 = At the fault location, Short Circuit impedance and 

c = voltage factor. 

The c factor or voltage factor is the ratio of equivalent 

voltage to nominal voltage and required to account for 

variation due to time and place, transformer taps, static load 

and capacitance, generator & motor sub-transient behaviour. 

The peak current 𝐼𝑃 can be calculated by Equation (2) where 

𝑘 is a function of system X/R ratio at the fault location. 

 

𝐼𝑃 = √2 ∗ 𝑘 ∗ 𝐼𝑘
′′  (2) 

 

where 𝑘 is a function of the system R/X ratio at the fault 

location. IEC Standards provide three methods for calculating 

the k factor [5]: 

(i) Method A - Uniform ratio R/X. The magnitude of the 

k factor is obtained by choosing the lowest ratio of R/X 

of all the branches of the power system. 

(ii) Method B - At Short Circuit place ratio of R/X. The 

magnitude of the k factor is obtained by multiplying a 

safety factor of 1.15 by the 𝑘 factor, which includes 

inaccuracies resulted after determining the R/X ratio 

from a power system minimization with complex 

impedances. 

(iii) Method C - Equivalent frequency. The magnitude of 

the k factor is determined using a frequency-varied 

R/X. R/X is computed at least frequency and then 

multiplied by a frequency-dependent factor. 

 

The breaking current (𝐼𝑏) for the fault occurred far away 

from the generator terminal and for the fault occurred near the 

generator terminals are obtained as expressed in Equation (3) 

to (5) respectively. 
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𝐼𝑏 = 𝐼𝑘
′′    (3) 

 

𝐼𝑏 = 𝜇 ∗ 𝐼𝑘
′′   (4) 

 

𝐼𝑏 =  𝜇 ∗ 𝑞 ∗ 𝐼𝑘
′′   (5) 

 

where 𝑞, 𝜇 are the coefficients that accounts for AC decay. 

By using the frequency of the network (f), least delay of 

shielding devices (tmin) the dc factor of fault current (𝐼𝑑𝑐) is 

achieved as expressed in Equation (6). 

 

𝐼𝑑𝑐 = 𝐼𝑘
′′ ∗ √2 ∗ 𝑒𝑥𝑝 ⌈

√2𝜋𝑓𝑡𝑚𝑖𝑛
𝑋

𝑅

⌉  (6) 

 

The objective to perform Short Circuit analysis for offline 

grid monitoring, there are some guidelines: 

• To evaluate the Installed respective protective devices 

with parameter as per IEC standard. 

• To define the switchgear setting. 

• To evaluate and make sure that the systems are 

withstood capability of installed protective equipment 

for such particular fault. 

• To determine the fault magnitude using Short Circuit 

analysis such as line-to-line-to-line, line-to-line, line-

to-line-neutral, line-to-neutral etc at any bus bar. To 

determine sub-transient, transient, steady-state 

currents on different bus-bar levels. 

 

III. SYSTEM DESCRIPTION AND SIMULATION 

 

To enhance the performance and making power network 

stable here an NTDC 220KV grid model having three 

different voltage levels with loads having a different rating is 

proposed. To conclude the actual outcome of a power 

network, appropriate computational models and the exact 

factors of the power systems, power grid and load synoptic 

have to be nominated. The single line diagram (SLD) of the 

power grid is illustrated in Figure-2; the power grid station is 

simulated on ETAP software. To enhance the power quality 

and consistency of the grid, the Band Road Grid Station 

(BRGS) have network connectivity with NTDC at four points 

NTDC power is available at 220KV voltage level through 

utility ties U1, U2, U3 and U4. To deliver nonstop power 

supply and improve the grid power double line conductor has 

installed for incoming lines. These lines are placed parallel to 

feed station and they can perform as a source and sink 

according to the power required. One and a half circuit 

breaker scheme is used for the grid protection at 220KV level. 

Using transformers firstly voltage is step down to 132KV 

then further it was step down to 11KV for industrial and 

domestic distribution. 

 

 

 
 

Figure 2: Single line diagram of grid station 

 

To represent the 11KV feeder load current, lumped loads 

having 70 percent motor and 30 percent static characteristics 

are placed. Method C is used for modeled 220kv power grid 

as it is a non-meshed grid. 

 

 

IV. RESULTS AND DISCUSSION 

 

For selected domestic/industrial power network at different 

time intervals, the results of the Short Circuit analysis are 

given in Table 1, 3 and 5. Its graphical representation at 

different buses for various cases are shown in Figure 4, 5 and 
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6. Here, three time intervals; peak load time, shoulder peak 

time and low load time are selected to properly evaluate the 

power system to enhance its performance. 

Table 1, 3 and 5 show the fault currents evaluation at 

different voltage levels for the symmetrical or three phase 

networks along with a double line to ground, line to line and 

line to the ground network for the sub-transient, transient and 

steady- state states at peak load, shoulder peak and low load 

time. 

Normally 3-phase fault have greater magnitude as compare 

to the other faults and it can be seen from the Table 1, 3 and 

5, that 3-phase fault having 29.012 magnitude which is 

greater as compared to L-G fault magnitude which is zero, L-

L fault and L-L-G fault having 25.125 magnitudes at 220kv 

voltage bus. Similarly, this pattern can see for the 132kv and 

11kv buses in Table 1. 

As utility 220kv bus and 132kv bus have delta connection, 

that is way line to ground fault shows zero value, line to line 

and double line to ground fault shows similar values. Table- 

2, 4 and 6 explains well about the comparison between the 

rating of the installed device and fault magnitude for peak 

load, shoulder peak and low load time. 

Comparison is given between device peak making rated 

current 𝐼𝑃(𝑑𝑒𝑣𝑖𝑐𝑒) having 108kA verses fault top envelope 

𝐼𝑃(𝑓𝑎𝑢𝑙𝑡) 29.012kA, device symmetrical 40kA and 

Asymmetrical 42.689kA rated 𝐼𝑏(𝑑𝑒𝑣𝑖𝑐𝑒) verses system fault   

symmetrical 10.776kA and Asymmetrical fault 13.428kA   

current 𝐼𝑏(𝑓𝑎𝑢𝑙𝑡), device rated dc component 𝐼𝑑𝑐(𝑑𝑒𝑣𝑖𝑐𝑒) 

14.911kA verses fault current dc component 

𝐼𝑑𝑐(𝑓𝑎𝑢𝑙𝑡) 8.012kA for peak load time at 220kv bus in Table  

2, which have maximum values as compare to shoulder peak 

load time in Table 4 and low load time in Table 6. 

A comparison is presented in the Figure 3 for the 3-phase. 

Short Circuit(KA) for the peak or transient fault current in 

power system at different buses for various cases i.e. peak 

load, shoulder peak load and low load time and it can be seen 

that for peak load 3-phase having 62.895kA maximum fault 

magnitude at 11kv bus. 

Similarly, Figure 4, 5 and 6 simultaneously shows the 

comparison at different buses for various loading conditions 

for double line to ground Short Circuit (KA), double line 

Short Circuit (KA) and line to ground Short Circuit (KA) for 

the transient fault current. The comparison of peak 

parameters is expressed very well in the Figures. 

 
Table 1 

Phase and Ground Short Circuit Analysis Results at Peak Load 

 
Bus ID 3-Phase Fault L-G Fault L-L Fault L-L-G Fault 

 

            

Utility 220KV Bus-1 10.776 29.012 10.497 0 0 0 9.333 25.125 9.333 9.333 25.125 9.333 
Utility 220KV Bus-2 10.776    29.012  10.497    0  0    0  9.333    25.125  9.333 9.333 25.125 9.333 
132KV Bus-1 9.694 26.216 9.218 0 0 0 8.396 22.704 8.396 8.396 22.704 8.396 
132KV Bus-2 9.694    26.216  9.218    0  0    0  8.396    22.704  8.396 8.396 22.704 8.396 
11KV Bus-1    24.092  62.895  15.810  20.864  54.468  20.864  21.863  57.076  21.863  23.276  60.763  23.276  
11KV Bus-2 24.092    62.895  15.810    20.864  54.468    20.864  21.863    57.076  21.863 23.276 60.763 23.276 

 
Table 2 

Device Rating Short Circuit Analysis Results at Peak Load 
 

BUS ID Device Capacity (kA) Short Circuit Capacity 

 Making Peak Sym Asym 𝐼𝑝 𝐼𝑏 Sym 𝐼𝑏 Asym 

Utility BUS 220 KV-1 108 40 42.689 14.911 29.012 10.776 13.428 8.012 
Utility BUS 220 KV-2 108 40 42.689 14.911 29.012 10.776 13.428 8.012 

132 KV BUS-1 108 40 42.689 14.911 26.216 9.617 12.335 7.724 
132 KV BUS-2 108 40 42.689 14.911 26.216 9.617 12.335 7.724 
11KV BUS-1 100 40 34.482 17.812 62.895 21.934 26.670 15.172 

11 KV BUS-2 100 40 34.482 17.812 62.895 21.934 26.670 15.172 

 

Table 3 
Phase and Ground Short Circuit Analysis Results Aat Shoulder Peak Load 

 

Bus ID 3-Phase Fault   L-G Fault   L-L Fault   L-L-G Fault 
 

            

Utility 220KV Bus-1 10.699 28.810 10.497 0 0 0 9.266 24.950 9.266 9.266 24.950 9.266 
Utility 220KV Bus-2 10.699    28.810  10.497    0  0    0  9.266    24.950  9.266 9.266 24.950 9.266 
132KV Bus-1 9.560 25.865 9.218 0 0 0 8.279 22.400 8.279 8.279 22.400 8.279 
132KV Bus-1 9.560    25.865  9.218    0  0    0  8.279    22.400  8.279 8.279 22.400 8.279 

11KV Bus-1    21.090  55.399  15.810  18.264  47.977  18.264  20.129  52.876  20.129  20.743  54.488  20.743  
11KV Bus-1 21.090    55.399  15.810    18.264  47.977    18.264  20.129    52.876  20.129 20.743 54.488 20.743 

 

Table 4 
Device Rating Short Circuit Analysis Results at Shoulder Peak Load 

 

BUS ID Device capacity (kA) Short Circuit Current (kA) 

Making Peak Sym Asym                                                            sym                    Asym 

Utility BUS 220 KV-1 108 40 42.689 14.911 28.810 10.699 13.347 7.980 

Utility BUS 220 KV-2 108 40 42.689 14.911 28.810 10.699 13.347 7.980 
132 KV BUS-1 108 40 42.689 14.911 25.865 9.560 12.257 7.671 

132 KV BUS-2 108 40 42.689 14.911 25.865 9.560 12.257 7.671 
11KV BUS-1 100 40 34.482 17.812 55.399 19.504 24.135 14.215 
11 KV BUS-2 100 40 34.482 17.812 55.399 19.504 24.135 14.215 
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Table 5 
Phase and Ground Short Circuit Analysis Result at Low Load 

 

BUS ID 3-Phase Fault L-G Fault L-L Fault L-L-G Fault 

 𝐼𝑘
′′ 𝐼𝑝 𝐼𝑘 𝐼𝑘

′′ 𝐼𝑝 𝐼𝑘 𝐼𝑘
′′ 𝐼𝑝 𝐼𝑘 𝐼𝑘

′′ 𝐼𝑝 𝐼𝑘 

Utility BUS 220 KV-1 10.625 28.609 10.497 0 0 0 9.201 24.776 9.201 9.201 24.776 9.201 

Utility BUS 220 KV-2 10.625 28.609 10.497 0 0 0 9.201 24.776 9.201 9.201 24.776 9.201 

132 KV BUS-1 9.432 25.522 9.218 0 0 0 8.169 22.103 8.169 8.169 22.103 8.169 
132 KV BUS-2 9.432 25.522 9.218 0 0 0 8.169 22.103 8.169 8.169 22.103 8.169 
11KV BUS-1 18.799 49.478 15.810 16.281 42.849 16.281 18.681 49.167 18.681 18.825 49.546 18.825 

11 KV BUS-2 18.799 49.478 15.810 16.281 42.849 16.281 18.681 49.167 18.681 18.825 49.546 18.825 

 
Table 6 

Device Rating Short Circuit Analysis Results at Low Load 

 

BUS ID Device capacity (kA) Short Circuit Current (kA) 

Making Peak  Sym Asym 
 

 
 

 sym Asym  

Utility BUS 220 KV-1 108 40 42.689 14.911 28.609 10.625 13.270 7.950 
Utility BUS 220 KV-2 108 40 42.689 14.911 28.609 10.625 13.270 7.950 
132 KV BUS-1 108 40 42.689 14.911 25.522 9.432 12.128 7.624 
132 KV BUS-2 108 40 42.689 14.911 25.522 9.432 12.128 7.624 
11KV BUS-1 100 40 34.482 17.812 49.478 17.747 22.241 13.405 
11 KV BUS-2 100 40 34.482 17.812 49.478 17.747 22.241 13.405 

 

 

  
 

Figure 3: 3-phase Short Circuit (KA) at different buses for various cases 

 

 

Figure 5: Double line Short Circuit (KA) at different buses for various 

cases 
 

  
 

Figure 4: Double line to ground Short Circuit (KA) at different buses for 
various cases 

 

Figure 6: Line to ground Short Circuit (KA) at different buses for various 
cases 

 

 

V. CONCLUSION 

 

The simulation and fault study analysis have been 

performed on the ETAP software for the offline grid 

monitoring purpose. The fault studies have been done by 

placing the fault at different voltage levels. Their impact in 

the form of magnitude is calibrated and plotted for sub-

transient, transient and steady-state currents. These results are 

beneficial to decide the power system equipment withstand 

capability against fault and the resizing and enhancement of 

the installed apparatus. The comparison for peak Short 

Circuit at different buses for various loading conditions are 

expressed very well in the figures.  
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