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Abstract – This paper relates to the dynamic behavior of the composite material beams gradually 

evaluated through the thickness. Our work is to analyze the natural frequencies of composite beams 

FGM used in building structures in Civil Engineering often subjected to vibration loads due to 

earthquake. The vibration characteristics specific beams such as free fixed beams are studied and 

orthotropic without including distortion due to shear and rotational inertia. On the one hand we 

introduce the effects of the shear deformation due to shear and rotational inertia for the accurate 

prediction of natural frequencies. Copyright © 2016 Penerbit Akademia Baru - All rights reserved. 
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1.0 INTRODUCTION  

In the last decade, there has been is interested in beams composites evaluated gradients 

(FGM) as robotic arms, helicopter blades and many other applications with the main 

objective the improvement of vibration characteristics [1]. 

During these years, several authors have tried to predict the natural frequencies of composite 

beams (FGM) [2], but there were some forecasts for these beams [3]. Some researchers 

studied the free vibration characteristics embedded orthotropic beams without including the 

shear deformation and rotary inertia [4]. An exact solution for free vibration of composite 

beams (FGM) simply supported without shear deformation and rotational inertia has also 

been reported in this work [5]. The effects of transverse shear strain is imposed for 

composites, because of the high ratio of longitudinal to transverse shear modulus of the shear 

modulus [6], and the classical theory of stratification is unsatisfactory for accurate prediction 

of natural frequencies [7]. 

In the current work, exact solutions were presented for shear beams symmetrical composite 

materials was evaluated gradients [8]. The presented method is applicable to solution 

conditions to arbitrary levels and the results can be used as a reference to the approximate 

solutions [9]. In the composite beam (FGM), shown in table 1, the displacement field 
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assumed for this beam based on the theory of the first order shear deformation and takes the 

following form [10]. 

 

 

 

 

 

 
 

 

 

Figure 1: Geometry of a beam of composite materials functionally graded 

2.0 THE DISPLACEMENT FIELD 

)t,x(z)t,x(u)t,z,x(u ψ+=              (1) 

),(),,( txwtzxw =  

 

u  and w  are such that the two components of displacement of a point in the neutral axis and 

ψ Means rotation around the normal of the neutral axis [11]. 

The equation of deformations is written 

 

CTzkxxx ∆β∆αεε −−+= 0              (2) 

 

x

w
xz ∂

∂+=ψγ                (3) 

 

with  

 

0
xε =

x

u

∂
∂

  et   
xxk

∂

∂
=

ψ
             (4) 

 

The constraint is given by 

 

xx E εσ 11=                                                                  (5) 

3.0 DETERMINATION OF BENDING MOMENT AND NORMAL FORCE 

The normal force and bending moment are given by the following expression 

 

( ) ( )∫=
A

xxx dAz,M,N 1σ                                                     (6) 

Replacing the expression of the stress we will 
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( ) ( )∫ −−+=
A

xxxx bdzz,)CTzk(EM,N 10
11 ∆β∆αε                   (7)                           

So: 

∫ −−+=
A

xxx bdz)CTzk(EN ∆β∆αε 0
11                                      (8) 

 

∫ −−+=
A

xxx bzdz)CTzk(EM ∆β∆αε 0
11                                     (9) 

 

In another way: 

                                                                            

CbdzETbdzEbdzzkEbdzEN xxx ∆β∆αε ∫∫∫∫ −−+= 111111
0

11                                         (10) 

                                        

CbzdzETbzdzEdzbzkEbzdzEM xxx ∆β∆αε ∫∫∫∫ −−+= 1111
2

11
0

11                                 (11) 

 

Eventually the normal force xN and the bending moment xM can be written in this form 

 

UkBAN xxx ++= 11
0

11ε                                                 (12) 

 

RkDBM xxx ++= 11
0

11ε                                                   (13) 

 

with: 

 

∫= bdzEA 1111   

∫= bzdzEB 1111                                                                                                                     (14) 

∫= dzbzED 2
1111    

CbdzETbdzEU ∆β∆α ∫∫ −−= 1111    

CbzdzETbzdzER ∆β∆α ∫∫ −−= 1111            

 

The equations of xN and xM are written in matrix form 
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and  

 

xzxz AQ γ55=                                                               (16)    

 

A11, B11, and D11 designate terms of rigidity of the membrane matrix, coupling and flexing 
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( ) ( )∫
−

=
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2
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11111111 1
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A55 is the shear factor, defined by 

∫
−

=
2

2

1355

/h

/h

dzGbkA                                                      (18) 

 

Or  13G  is the term of expression 

 

mGfVfG)fV(

mGfG
G

+−
=

113                                                  (19)   

 

And k is the shear correction factor. 

4.0 THE EQUILIBRIUM EQUATIONS 

We can establish the equilibrium equations from the principle of virtual work [12]. Static 

balance can be described by the sum of the internal work int( )Wδ  and the external work 

( )extWδ developed by the displacement field of a point located on a part of the virtual work. 

The border every effort (interior and external) acting the system is zero [13]. 

5.0 VIRTUAL W.ORK INTERNAL AND EXTERNAL EFFORTS  

int( ) ( ) 0,extW U W U Uδ δ δ δ δ+ = ∀                                          (20) 

 

The work of external forces is written 
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The work of the internal forces is written 
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D
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In this case the principle of virtual work is expressed as follows 
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dz)z,z,(b)I,I,I(
/h

/h

2
2

2

321 1∫
−

= ρ                                               (24) 

 

The expression of ρ is given by 

mmff VV ρρρ +=                                                         (25) 

 

The values of fV and mV  are given as follows 

 

1=+ mf VV                                                                   (26)      

 

with 

h

n
z

f )VV(VV 212 −+=                                                                                        (27) 

 

The equation of motion for a beam of composite material evaluated gradient can be obtained 

by substituting equation (1), (13) and (14) in equation (21), in by incorporating part of the 

displacement gradients and the coefficients are fixedu , w  and ψ  separately. For a 

symmetrical composite laminates 11B is equal to zero and in the plane of movement can be 

considered as negligible compared to the displacement due to bending [14]. The equations of 

motion are to be deducted [15] 
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We calculate each term separately 
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6.0 THE EQUATIONS OF MOTION 

The equations can be written as follows: 
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Equations (28) and (29) are used to determine the free vibration of the composite beam 

(FGM) [16]. 

7.0 HARMONICS SOLUTIONS 

For the solution of these equations we will follow the procedure 
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With ω is the circular frequency. Using equations (30) and (31), equations (28) and (29) can 
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Equations (32) and (33) are transformed into two differential equations through the following 

steps. From equation (32) was 

 

L

Wca

Ld

Wd

d

d 22

2

2
−−=

ξξ
Ψ                                                  (41) 



Journal of Advanced Research in Applied Mechanics 

  ISSN (online): 2289-7895 | Vol. 18, No. 1. Pages 15-29, 2016 

 

 

21 

 

Penerbit

Akademia Baru

 

Equation 33 is derived once a report ξ is obtained 
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In an identical manner and from the equation (33) was 
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So the equations (43) and (45) can be expressed as follows 
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8.0 SOLUTIONS OF DIFFERENTIAL EQUATIONS 

The solutions of the equations (42) and (50) can be written as the following steps [17] 
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We will have the general form 
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By performing addition and subtraction we have 

 

αξαξαξ aeasinhacosh =+  

αξαξαξ aeasinhacosh −=−  

βξβξβξ iaeasiniacos =+  
βξβξβξ ia

eaia
−=− sincos                                                                                                      (51) 

 

With α and β  given by the following expressions 

 

2

1

2

1

2

422222

2

1

























+−++=

−

+
a

)cb()cb(
α
β

                           (52) 
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We will have the general form 
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For values of the constants B1  B2   B3   B4  used in equation (13) or is replaced expressions 
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9.0 THE BOUNDARY CONDITIONS 

The four boundary conditions for the beam are studied [17] 

9.1 Simply Supported 
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9.2 Clamped - Clamped 
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9.3 Clamped - Free 
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ξ = 0, 1 W=0 0=Ψ            (65) 

 

The solutions for the four types of beam considered leads to the following matrix [18] 
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The coefficients 1L  , 2L up 12L depending on the boundary conditions of the beam. 

10.0 THE DIFFERENT TYPES OF FIXATION 

The equations are as follows 

10.1 Simply Supported 
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10.3 Clamped - Free 
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10.4 Simply Supported – Clamped 
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Finally [19], that may have frequencies of composite beams symmetrical materials has 

gradients evaluated (FGM) were predicted using the first order theory which leads to a 

transverse shear deformation The numerical results presented for these beams are commonly 

met with various boundary conditions as they can be used as a reference for the approximate 

solutions [20]. 

11.0 THE INFLUENCE OF THE INDEX MATERIEL 

In order to get the results regarding the influence of the physical evidence of the beam 

composite rated gradient [21], one must study the variation of displacement fields according 
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to three parameters by varying (n, N, ξ ), we analyzed the movements and non dimensional 

frequencies ϖ [22]. The studied beam will be considered a symmetrical beam gradient 

composites evaluated polymer matrix with carbon fibers [23]. The beam has a thickness h = 1 

m, length L = 15m and the following material properties 

Gpa.Em 53=  Gpa.E f 76137=  

Gpa.Gm 61=   GpaG f 12=  

31200 m/kgm =ρ  31450 m/kgf =ρ  

601 .V =   402 .V =  

83333330.k =  

 

The results are shown in the following tables  

Table 1: Variation of displacement W of ξ function for the first mode 

MODE 1 Simply – simply          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 0.58 1 0.58 0 

ξ  0 0.2 0.5 0.8 1 

Table 2: Variation of displacement W of ξ function for the mode number 2 

MODE 2 Simply – simply          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 1 0 -1 0 

ξ  0 0.25 0.5 0.75 1 

Table 3: Variation of displacement W of ξ function for the mode number 3 

MODE 3 Simply – simply          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 1 -1 1 0 

ξ  0 0.15 0.5 0.85 1 

Table 4: Variation of displacement W of ξ function for the mode number 4 

MODE 4 Simply – simply          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 1 0 -1 0 1 0 -1 0 

ξ  0 0.1 0.25 0.35 0.5 0.6 0.75 0.85 1 

Table 5: Variation of displacement W of ξ function for the mode number 5 

MODE 5 Simply – simply          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 1 0 -1 0 1 0 -1 0 1 0 

ξ  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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Table 6: Variation of displacement W of ξ function for the first mode 

MODE 1 Clamped – Clamped          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 0.63 1.42 0.63 0 

ξ  0 0.2 0.5 0.8 1 

Table 7: Variation of displacement W of ξ function for the mode number 2 

MODE 2 Clamped – Clamped          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 1.14 0 -1.14 0 

ξ  0 0.25 0.5 0.75 1 

Table 8: Variation of displacement W of ξ function for the mode number 3 

MODE 3 Clamped – Clamped          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 1.08 -1.008 1.08 0 

ξ  0 0.2 0.5 0.8 1 

Table 9: Variation of displacement W of ξ function for the mode number 4 

MODE 4 Clamped – Clamped          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 1 0 -1 0 1 0 -1 0 

ξ  0 0.1 0.25 0.35 0.5 0.6 0.75 0.85 1 

Table 10: Variation of displacement W of ξ function for the mode number 5 

MODE 5 Clamped – Clamped          V1=0.6    V2=0.4   n=0,1,2,3,4 

W= βξasin  0 1 0 -1 0 1 0 -1 0 1 0 

ξ  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

To understand the influence of -n- physical evidence on the displacement field W, several 

types of fixation and vibration modes were made [24]. The importance of physical evidence 

exposed in our case on the beam behavior is guided by the perceived difference [25]. The 

displacement calculated from the expression (W) is compared to each mode between the six 

different values of (n) [26]. In the case of a simply supported beam Tables (1) to (5) clearly 

show that in the first five modes parameter (n) has no influence on the shape of patterns 

despite the change geometrical or physical characteristics of the beam[27]. By cons in the 

case of a doubly clamped beam the influence of the exponent (n) is illustrated in Tables (6) to 

(10) [28], this difference is mainly due to the variation of (n) which implies that this 

parameter plays a crucial role in the rigidity of beams for where fixed or moving is larger 

than that of a simply supported beam [29].  

12.0 CONCLUSION 

Determining the vibratory characteristics of the composite beams evaluated graded materials 

(FGM), to solve certain problems, we have developed the analytical method that uses the 

displacement fields of the beams [30]. 
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These fields based on the first order theory that requires the use of k shear factor that leads to 

a transverse shear deformation in the thickness direction. We can say that the frequencies of 

the symmetrical beams composites evaluated gradient (FGM) were predicted using first order 

theory which gives the possibility of certainty the shearing effect on the occurrence of 

vibration beams, while respecting the displacement field cancellation in the ends of the beam 

[31]. 

However, with this method we validated some applications to determine the different 

parameters that affect the movement. The numerical results obtained for these beams are 

commonly calculated for various boundary conditions and we can use them as references to 

approximate solutions. 
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