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Abstract 
 

Two-phase flow boiling pressure drop experiment was conducted to observe its 

characteristics and to develop a new correlation of void fraction based on the 

separated model. Investigation is completed on the natural refrigerant R-290 

(propane) in a horizontal circular tube with a 7.6 mm inner diameter under 

experimental conditions of 3.7 to 9.6 C saturation temperature, 10 to 25 kW/m2 heat 

flux, and 185 to 445 kg/m2s mass flux. The present experimental data was used to 

obtain the calculated void fraction which then was compared to the predicted 

void fraction with 31 existing correlations. A new void fraction correlation for 

predicting two-phase flow boiling pressure drop, as a function of Reynolds numbers, 

was proposed. The measured pressure drop was compared to the predicted 

pressure drop with some existing pressure drop models that use the newly 

developed void fraction model. The homogeneous model of void fraction showed 

the best prediction with 2% deviation.  
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Abstrak 
 

Kejatuhan tekanan aliran didih dua fasa secara eksperimen telah dijalankan untuk 

melihat ciri-ciri penurunan dan untuk membangunkan hubungan pecahan 

kekosongan yang baru berdasarkan kepada model dipisahkan. Kajian dilakukan 

ke atas penyejuk semula jadi R-290 (propana) dalam tiub bulat mendatar dengan 

garis pusat dalaman 7.6 mm pada suhu tepu di antara 3,7-9,6 C, dengan fluks 

haba 10 hingga 25 kW/m2, dan fluks jisim 185-445 kg/m2s. Data dari eksperimen 

telah diguna untuk mendapatkan pecahan kekosongan yang kemudiannya 

dibandingkan dengan jangkaan pecahan kekosongan oleh 31 korelasi yang sedia 

ada. Satu korelasi baru untuk pecahan kekosongan bagi jangkaan penurunan 

tekanan aliran didih dua fasa dicadangkan, sebagai fungsi angka Reynolds. 

Penurunan tekanan yang diukur dibandingkan dengan jangkaan kejatuhan 

tekanan oleh beberapa model kejatuhan tekanan sedia ada menggunakan 

model pecahan kekosongan yang baru dibangunkan. Model homogen pecahan 

kekosongan menunjukkan ramalan yang terbaik dengan 2% sisihan. 

 

Keywords: Pecahan kekosongan; kejatuhan tekanan; aliran dua fasa; didih; R-290 

 
© 2016 Penerbit UTM Press. All rights reserved 

  

  



98                      Agus Sunjarianto Pamitran et al. / Jurnal Teknologi (Sciences & Engineering) 78: 8–4 (2016) 97–104 

 

 

1.0  INTRODUCTION 
 

R-290 is not a new working fluid for refrigeration system; 

it has been used since the early 1990s. Around 1950, 

refrigerant propane was tested on a conventional 

cooling system, showing a good performance [1]. 

Recently, due to the high attention paid to the effects 

of using halocarbon refrigerants on the environment, 

use of natural refrigerants such as ammonia and 

propane have been reconsidered. R-290 can be 

classified as an environmentally friendly natural 

refrigerant as it has zero ODP (Ozone Depletion 

Potential) and poses a low risk of global warming, or has 

low GWP (Global Warming Potential).  

Some previous studies on void fraction show several 

models for predicting the void fraction. Xu and Fang [2] 

evaluated some void fraction correlations that were 

classified into five categories including homogeneous, 

slip ratio, Kαh, drift flux, and miscellaneous. Assuming 

that the velocity of the gas and liquid had the same 

value is principal to derive the homogeneous model. 

The slip ratio model was developed with ratio of the gas 

velocity to the liquid velocity in mind. The Kαh model 

was a modified version of the homogenous model, 

using a coefficient as an empirical correction factor. 

The drift flux model was developed to resolve the 

differences between gas and liquid’s superficial 

velocity, by introducing a Confinement number (Co). 

Many miscellaneous models used the parameter of 

Lockhart and Martinelli [3]. 

Some previous studies investigated two-phase flow 

boiling pressure drop using natural refrigerants, 

particularly R-290. Pamitran et al. [4] observed the 

pressure drop characteristics of R-290 in a horizontal 

circular tube. Mishima and Hibiki [5] proposed a C 

parameter based on the pressure drop correlation of 

Chisholm using air-water.  

The present experimental study was devoted to 

observing the void fraction in two-phase flow boiling, 

and to develop a new model of the void fraction with 

the slip ratio model as a function of Reynolds numbers. 

The measured pressure drop was compared with some 

existing pressure drop models, using the new 

developed void fraction model. 

 

 

2.0  METHODOLOGY 

 
The experimental set-up consisted mainly of a horizontal 

stainless steel test section with a length of 1.07 m, a 

condensing unit, a refrigerant pump, and a flow meter, 

as shown in Figure 1. K-type thermocouples were 

installed at nine points, with every point consisting of 

three thermocouples. Sight glasses were installed at the 

inlet and outlet of the test section for visualization of the 

flow. In order to measure the pressure, pressure 

transmitters were installed at the inlet and outlet of the 

test section. Condensing unit was used to condense the 

refrigerant. A Coriolis flow meter with an uncertainty of 

± of 0.05% was used to measure the flow rate. A liquid 

receiver was installed in order to ensure that only liquid 

flowed into the pump. 

The present void fraction was compared with some 

void fraction models. Some existing void fraction 

correlations are shown in Table 1.  

 

 

3.0  RESULTS AND DISCUSSION 
 

Thirty one existing correlations of void fraction are used 

for comparison, as shown in Table 1 and Figure 2. The 

experiments were conducted with a low quality range 

of 0 to 0.15. The results show that the homogenous 

model of void fraction best predicted the present 

experimental data. Good predictions are shown by the 

homogeneous model, Massena [9] and El Hajal [10] 

(Kαh model), Lockhart and Martinell [3], Domanski and 

Didion [28], Wallis [30], Chen and Spedding [31] (Xtt 

model), and Fang et al. [15] (slip ratio model). 

Figure 3 depicts a pressure drop comparison with the 

homogeneous model. The frictional pressure drop 

equation used the equation for the homogeneous 

model, whereas the acceleration pressure drop was a 

function of the void fraction. The result showed a 

deviation range of 33% to 75%. 

Figure 4 illustrates a pressure drop comparison with 

the separated model using equation C by Chisholm [6]. 

Frictional pressure drop was calculated with the 

separated model using this equation. All data showed 

condition of turbulence-turbulence. The result showed 

a deviation range of -37.5% to 87.5%. 

Figure 5 shows a pressure drop comparison with the 

separated model using equation C by Pamitran et al. 

[4]. Frictional pressure drop was calculated with the 

separated model using this equation. The parameter C 

of Pamitran et al. [4] was a function of the Weber and 

Reynolds numbers. The comparison showed a deviation 

range of 16.67% to 66.67%.   
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Figure 1 Experimental apparatus 

 

 

Table 1  Published void fraction correlations 

 
Homogeneous model 

𝛼ℎ =  
1

1 + (
(1 − 𝑥). 𝜌𝑔

𝑥. 𝜌𝑙
)

 

Chisholm, 1983 [6] 𝛼 =  
𝛼ℎ

𝛼ℎ + (1 − 𝛼ℎ)0,5
 

Armand, 1946 [7] 𝛼 = 0.833 𝛼ℎ 

Nishino and Yamazaki, 1963 [8] 
𝛼 = 1 − (

1 − 𝑥

𝑥

𝜌𝑔

𝜌𝑙

)
0.5

𝛼ℎ
0.5 

Massena, 1960 [9] 𝛼 = {[0.833+(1−0.833)𝑥]𝛼ℎ    𝑓𝑜𝑟 𝛼ℎ≥0.9
               0.833𝛼ℎ                   𝑓𝑜𝑟 𝛼ℎ<0.9

 

El Hajal et al., 2003 [10] 𝛼 =
𝛼ℎ − 𝛼𝑠𝑡𝑒𝑖𝑛𝑒𝑟

𝑙𝑛 (
𝛼ℎ

𝛼𝑠𝑡𝑒𝑖𝑛𝑒𝑟
)

 

Guzhov et al., 1967 [11] 𝛼 = 0.81[1 − 𝑒𝑥𝑝(−2.2√𝐹𝑟𝑡𝑝)] 𝛼ℎ 

𝐹𝑟𝑡𝑝 =
𝐺𝑡𝑝

2

𝑔𝐷𝜌𝑡𝑝
2  ,     

1

𝜌𝑡𝑝

=  
1 − 𝑥

𝜌𝑙

+
𝑥

𝜌𝑔

 

Thom, 1964 [12] 
𝛼 =  [1 + (

1 − 𝑥

𝑥
) (

𝜌𝑔

𝜌𝑙

)
0.89

(
𝜇𝑙

𝜇𝑔

)

0.18

]

−1

 

Fauske, 1961 [13] 
𝛼 =  [1 + (

1 − 𝑥

𝑥
) (

𝜌𝑔

𝜌𝑙

)
0.5

 ]

−1

 

Zivi, 1964 [14] 
𝛼 =  [1 + (

1 − 𝑥

𝑥
) (

𝜌𝑔

𝜌𝑙

)
2/3

 ]

−1

 

Fang et al., 2012 [15] 
𝛼 =  [1 + (1 + 2𝐹𝑟𝑙𝑜

−0.2𝛼ℎ
3.5) (

1 − 𝑥

𝑥
) (

𝜌𝑔

𝜌𝑙

)]
−1

 

Petalaz and Aziz, 1997 [16] 
𝛼 =  [1 + 0.735 (

1 − 𝑥

𝑥
)

−0.2

 (
𝜌𝑔

𝜌𝑙

)
−0.126

(
𝜇𝑙

2𝑈𝑠𝑔
2

𝜎2
)

0.074

 ]

−1

 

Chisholm, 1983 [6] 

𝛼 =  [1 +  (
1 − 𝑥

𝑥
) (

𝜌𝑔

𝜌𝑙

) √1 − 𝑥 (1 −
𝜌𝑙

𝜌𝑔

)]

−1

 

Turner and Wallis, 1965 [17] 
𝛼 =  [1 + (

1−𝑥

𝑥
)

0.72

 (
𝜌𝑔

𝜌𝑙
)

0.4

(
𝜇𝑙

𝜇𝑔
)

0.08

 ]

−1

  

Steiner, 1993 [18] 𝐶𝑜 = 1 + 0.12(1 − 𝑥),   𝑈𝑔𝑚 =  
1.18(1−𝑥)

𝜌𝑙
0.5 [𝑔𝜎(𝜌𝑙 − 𝜌𝑔]

0.25
 

Rouhani and Axelsson, 1970 [19] 𝐶𝑜 = 1 + 0.2(1 − 𝑥),   𝑈𝑔𝑚 =  
1.18(1−𝑥)

𝜌𝑙
0.5 [𝑔𝜎(𝜌𝑙 − 𝜌𝑔]

0.25
 

Rouhani and Axelsson, 1970 [19] 
𝐶𝑜 = 1 + 0.2(1 − 𝑥)(𝑔𝐷)0.25 (

𝜌𝑙

𝐺𝑡𝑝
)

0.5

,   𝑈𝑔𝑚 =  
1.18(1−𝑥)

𝜌𝑙
0.5 [𝑔𝜎(𝜌𝑙 − 𝜌𝑔]

0.25
 

Nicklin et al., 1962 [20] 𝐶𝑜 = 1.2, 
 
𝑈𝑔𝑚 = 0.35√𝑔𝐷 
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Gregory and Scott, 1969 [21] 𝐶𝑜 = 1.19, 𝑈𝑔𝑚 = 0 

Dix, 1971 [22] 

𝐶𝑜 =  
𝑈𝑠𝑔

𝑈𝑚
[1 +  (

𝑈𝑠𝑙

𝑈𝑠𝑔
)

(
𝜌𝑔

𝜌𝑙
)

0.1

],    𝑈𝑔𝑚 =  2.9[𝑔𝜎(𝜌𝑙 − 𝜌𝑔]
0.25

 

Sun et al., 1980 [23] 𝐶𝑜 =  (0.82 + 0.18
𝑝

𝑝𝑐𝑟
)

−1

,    𝑈𝑔𝑚 =  1.41[𝑔𝜎(𝜌𝑙 − 𝜌𝑔]
0.25

 

Pearson et al., 1984 [24] 
𝐶𝑜 =  1 + 0.796 𝑒𝑥𝑝 (−0.061√

𝜌𝑙

𝜌𝑔
),    𝑈𝑔𝑚 = 0.034 (√

𝜌𝑙

𝜌𝑔
− 1) 

Morooka et al., 1989 [25] 𝐶𝑜 = 1.08, 
   

𝑈𝑔𝑚 = 0.45 

Bestion, 1990 [26] 
𝐶𝑜 = 1,    𝑈𝑔𝑚 = 0.188√

𝑔𝐷(𝜌𝑙−𝜌𝑔)

𝜌𝑔
 

Lockhart and Martinelli, 1949 [3] 𝛼 =  (1 + 0.28𝑋𝑡𝑡
0.71)−1 

  

Harms et al., 2003 [27] 
𝛼 =  [1 − 10.06𝑅𝑒𝑙

−0.875(1.74 + 0.104𝑅𝑒𝑙
0.5)2 (1.376 + 

7.242

𝑋𝑡𝑡
1.655)

−0.5

]

2

 

Domanski and Didion, 1983 [28] 
𝛼 = {

 0.823−0.157 𝑙𝑛(𝑋𝑡𝑡)                 𝑓𝑜𝑟 𝑋𝑡𝑡 >10

 (1+ 𝑋𝑡𝑡
0.8)

−0.38
                              𝑓𝑜𝑟 𝑋𝑡𝑡 ≤ 10

  

Yashar et al., 2001 [29] 
𝛼 =  [1 + 

1

𝐹𝑡
+ 𝑋𝑡𝑡]

−0.321

,    𝐹𝑡 =  [
𝐺𝑡𝑝

2 𝑥3

(1−𝑥)𝜌𝑔
2𝑔𝐷

]
0.5

 

Wallis, 1969 [30] 𝛼 =  (1 + 𝑋𝑡𝑡
0.8)−0.38 

Chen and Spedding, 1981 [31] 𝛼 =  
𝑘

𝑘+ 𝑋𝑡𝑡
2/3,    𝑘 = 3.5 

Tandon et al., 1985 [32] 𝐹𝑜𝑟  50 <  𝑅𝑒𝑙 < 1125,   𝛼 = 1 − 1.928𝑅𝑒𝑙
−0.315[𝐹(𝑋𝑡𝑡)]−1 + 0.9293𝑅𝑒𝑙

−0.63[𝐹(𝑋𝑡𝑡)]−2 

𝐹𝑜𝑟  𝑅𝑒𝑙 > 1125,   𝛼 = 1 − 0.38𝑅𝑒𝑙
−0.088[𝐹(𝑋𝑡𝑡)]−1 + 0.0361𝑅𝑒𝑙

−0.176[𝐹(𝑋𝑡𝑡)]−2 
𝐹(𝑋𝑡𝑡) = 0.15[𝑋𝑡𝑡

−1 + 2.85𝑋𝑡𝑡
−0.476] 

 
Figure 2  Comparison of void fraction with thirty one existing correlation 
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Figure 3  Pressure drop comparison with the homogeneous model 

 

 

 
 

Figure 4  Pressure drop comparison with the separated model using equation C by Chisholm [6] 
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Figure 5  Pressure drop comparison with the separated model using equation C by Pamitran 

  
 

The three above mentioned pressure drop 

predictions showed that predictions with the 

homogeneous model are better. The pressure drop 

predicted by Pamitran et al. [4] showed a lower 

deviation than that predicted by Chisholm [6].  

 

 

4.0  A NEW MODEL OF VOID FRACTION 

PREDICTION METHOD 
 

The approach towards a void fraction correlation used 

the slip ratio model. The equation can be developed as 

a function of vapor quality, x, density, , and velocity of 

fluid, u; it can be expressed as in Equation 1. 

 

       𝛼 =
𝐴𝑔

1+(
𝑢𝑔(1−𝑥)𝜌𝑔

𝑢𝑓𝑥𝜌𝑓
)

   (1) 

 

Subscript f and g each refers to the liquid and vapor 

phase respectively. Eq. 1 can be modified as a function 

of the liquid and vapor Reynolds numbers, shown in 

Equation 2. 

 

    𝛼 = [1 + 𝐴 (
𝑅𝑒𝑓

𝑅𝑒𝑔
)

𝐵

]

−1

   (2) 

 

Based on the present experimental data with R-290, a 

new correlation of the void fraction was proposed with 

coefficients of A and B being 0.396 and 1.037, 

respectively. Table 2 and Figure 6 illustrate the pressure 

drop comparison of the newly developed correlation 

with some previous correlations. The comparison with 

the homogeneous model showed the best prediction 

with a 2% mean deviation. The comparison showed a 

good agreement with the newly developed 

correlation. 

 

 

5.0  CONCLUSION 
 

This study developed a correlation of void fraction 

based on the slip ratio model, as a function of liquid and 

vapor Reynolds numbers. The comparison with the 

homogeneous model showed the best prediction, with 

a 2% mean deviation; a good agreement was shown 

with the newly developed correlation. This correlation 

could contribute towards a better design of heat 

exchangers. 
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Table 2  Pressure drop comparison 

 

Model Mean Deviation (
1

𝑁
 ∑

𝛼(𝑖)𝑝𝑟𝑒𝑑−𝛼(𝑖)𝑒𝑥𝑝

𝛼(𝑖)𝑒𝑥𝑝

𝑁
𝑖=1 ) 

Homogenous 2% 

El Hajal et al., 2003 7% 

Chen and Spedding, 1981 9% 

Lockhart and Martinelli, 1949 9% 
 

 

 
 

Figure 6  Prediction of pressure drop with the newly developed correlation 
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