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Abstract 

 

Pneumatic systems are widely used in automation industries and in the field of automatic control. 

Intelligent Pneumatic Actuators (IPA) is a new generation of actuators designed and developed for 

research and development (R&D) purposes. This work proposes two control approaches, Proportional 
Integral Adaptive Neuro-Fuzzy (PI-ANFIS) controller and Receding Horizon Controller (RHC), for IPA 

position control. The design steps of the controllers are presented. MATLAB/SIMULINK is used as a tool 

to implement the controllers. The design is based on a position identification model of the IPA. The 
simulation results are analyzed and compared with previous work on the IPA to illustrate the performance 

of the proposed controllers. The comparison shows a significant improvement in IPA position control after 

using the new controllers. 
 

Keywords: Intelligent pneumatic actuator; position control; neuro-fuzzy; receding horizon control  
 

Abstrak 
 
Sistem pneumatik digunakan secara meluas di dalam industri automasi dan dalam bidang kawalan 

automatik. Penggerak Pintar Pneumatik (IPA) ialah generasi terkini penggerak yang direka dan 

dibangunkan bagi tujuan penyelidikan dan pembangunan. Kerja ini mencadangkan dua pendekatan 
kawalan, iaitu Penyesuaian Berkadar Integral Neuro-Fuzzy (PI-ANFIS) dan Kawalan Surut Ufuk (RHC), 

untuk kawalan kedudukan IPA. Langkah-langkah bagi merekabentuk pengawal ditampilkan. 

Matlab/Simulink digunakan sebagai alat untuk mengadaptasi pengawal terbabit. Rekabentuk ini adalah 
berdasarkan model pengenalan kedudukan IPA. Keputusan simulasi di analisis dan dibandingkan dengan 

kerja-kerja terdahulu terhadap IPA untuk menggambarkan prestasi pengawal yang dicadangkan. 

Perbandingan terbabit menunjukkan peningkatan yang ketara didalam kawalan kedudukan IPA selepas 
menggunakan pengawal yang baru.. 

 

Kata kunci: Penggerak pintar automatik; kawal kedudukan; neoru-fuzzy; kawalan surut ufuk 
 

© 2014 Penerbit UTM Press. All rights reserved. 

 

 
 
 
 
 
1.0  INTRODUCTION 

 

Pneumatic systems are widely used in automation industries and 

in the field of automatic controllers. Pneumatic actuators are 

safe and reliable. They have relatively small size compared to 

hydraulic actuators. Moreover, they have fast response, and at 

high temperatures or in nuclear environments, they have the 

advantages over hydraulic actuators because gases are not 

subjected to temperature limitations.1 

  The difficulties of controlling pneumatic actuators are 

mostly because of the nonlinearities existed. The high frictional 

forces, which the pneumatic actuator is subjected to, the 

compressibility of air, the valve dead zone, etc are all sources of 

these nonlinearities. As a result, these nonlinearities had made 

achieving accurate position control of the pneumatic actuators 

become such a difficult task. 

  These merits and challenges have motivated many 

researchers among the years to propose and apply different 

control approaches to achieve higher accuracy and better 

dynamic performance. Their main interest is to control the 

position, but due to different industry and automation 
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requirements, the interests of researchers extended to control the 

force, stiffness and viscosity of the pneumatic actuators.2  

  Based on the historical development, pneumatic systems 

were created since the 16th century.3 There are mainly two types 

of pneumatic actuators, the piston-cylinder type and the rotary 

type. Many developments has been done on pneumatic actuators 

to suit different automation and industry requirements according 

to the desired accuracy and performance and to the amount of 

force that is needed for each particular application. In the 20th 

century, more complex and intelligent pneumatic systems were 

developed. The intelligent pneumatic actuator (IPA) system, on 

which the two proposed controllers are applied, is developed by 

A. A. M. Faudzi et al.4-6 in which they developed intelligent 

actuators for a Pneumatic Actuator Seating System (PASS). 

  The IPA plant structure is briefly explained in section 2. In 

section 3, two control approaches to control the IPA position 

namely PI Adaptive Neuro-Fuzzy controller and Receding 

horizon predictive controller (RHC) are presented. The results 

of these controllers are presented, analyzed and compared. The 

last section addresses the conclusion and the future work. 

 

 

2.0  THE IPA PLANT 

 

The actuator is equipped with five main components; laser strip 

on rod, optical encoder, pressure sensor, valves and PSoC 

microcontroller (Figure 1–shows all these components). There 

are three elements of the optical encoder; an LED light source, a 

photo detector IC and optical lenses. The lenses role is to focus 

an LED light onto the code strips. This light will be reflected 

and received by the photo detector IC. The encoder, which is 

used as position sensor, is mounted at bottom side of which is 

used as position sensor, is mounted at bottom side of the PSoC 

board (see Figure 1). 

 

 
Figure 1  Intelligent pneumatic actuator and its components2 

 

 

  There are two chambers available in IPA. By manipulating 

the pressure in chamber 1, right and left movements of the 

actuator can be controlled. The method of controlling the 

actuator movements is by supplying constant air pressure to 

chamber 2 at 0.6 MPa (P1) while regulating air inside chamber 1 

from (0-0.6) Mpa (P2). Right and left movements depend on the 

algorithm to drive the valve using PsoC PWM duty cycle in 

chamber 1. Pressure sensor is connected to PsoC for pressure 

data reading. The chamber pressure is the input for the control 

action of the cylinder. The pressure sensor reads the pressure in 

chamber 1 and can be used to calculate force, Fd using equation 

below: 

𝐹𝑑=𝑃2𝐴2−𝑃1𝐴1 
 

  where P1 and P2 are pressure data, A1 and A2 are cross-

sectional areas in chamber 1 and 2. Assume that P1 (constant 

0.6Mpa), A1, A2 are known values. By reading the pressure in 

chamber 2 (P2), force data, Fd can be known. 

  The actuator applies 2 valves, KOGANEI (EB10ES1-PS-

6W) (two ports two positions) to drive the actuator. The valves 

are attached at the end of the actuator. By controlling only air 

inlet in chamber 1, the control mechanism will be easier 

compared to control both chambers. Valve 1 will control the air 

inlet while valve 2 will control the air exhaust. The method of 

controlling the valves is by using PWM duty cycle driven by 

PsoC (Figure 2–shows the IPA schematic operations, valve 

connection and airflow to the cylinder). Below are the possible 

movements of the actuator, which depend on the valves 

operation.  

1) Valve 1-OFF, Valve 2-OFF–Cylinder stops  

2) Valve 1-OFF, Valve 2-ON–actuator moves left direction 

3) Valve 1-ON, Valve 2-OFF–actuator moves right direction 

4) Valve 1-ON, Valve 2-ON–no operation 

 

 
Figure 2  IPA schematic operations7 

 

 

  The PSoC board attached to the actuator plays an important 

role in control and communication of the actuator. There are two 

inputs signal; encoder and pressure sensor for PSoC and one 

output signal to control the valve. 

  A position model of the IPA used in this study has been 

previously obtained using system identification technique.8 The 

model was approximated using MATLAB System Identification 

Toolbox from open-loop input-output experimental data. For 

experimental setup, the hardware and Personal Computer (PC) is 

connected using Data Acquisition (DAQ) card through 

MATLAB software. 

  From several methods used in generating the signals such as 

PRBS (Pseudo-Random Binary Sequences), sinusoidal, step etc., 

the step signal was selected and was specially designed for the 

on/off valve of the cylinder system. This signal has been injected 

to valve and the output of the system was recorded. Several sets 

of input and output data sampled at 0.1s were collected for model 

estimation and validation. Each data contains 1000 samples. 

Details of the SI technique used are described in the references.2,8  

  The system identification resulted in an Auto-Regressive 

Moving Average with Exogenous Input (ARMAX) model in the 
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form of discrete-time open-loop transfer function. The model 

obtained is a linear third order system as in Equation (1), 

 
𝐵0(𝑧

−1)

𝐴0(𝑧
−1)
=
0.3033𝑧−1+0.04125𝑧−2+0.2108𝑧−3

1−1.147𝑧−1+0.9434𝑧−2−0.5826𝑧−3
             (1) 

 

  This discrete model is then converted to continuous 

transfer function for ANFIS controller design and to discrete 

state space model for RHC controller design. 

 

 

3.0  CONTROLLERS DESIGN 

 

This work proposes two control approaches, Proportional 

Integral Adaptive Neuro-Fuzzy (PI-ANFIS) controller and 

Receding Horizon Controller (RHC), for IPA position control. 

The design steps of the controllers are presented in the following 

subsections. 

 

3.1  Adaptive Pneuro-Fuzzy (Anfis) 

 

Classical control theory is based on the mathematical models that 

describe the physical plant under consideration. The essence of 

fuzzy control is to build a model of human expert who is capable 

of controlling the plant without thinking in terms of 

mathematical model. The transformation of expert's knowledge 

in terms of control rules to fuzzy frame work has not been 

formalized and arbitrary choices concerning, for example, the 

shape of membership functions have to be made. The quality of 

fuzzy controller can be drastically affected by the choice of 

membership functions. Thus, methods for tuning the fuzzy logic 

controllers are needed. In this work, neural networks are used to 

solve the problem of tuning a fuzzy logic controller. The neuro 

fuzzy controller uses the neural network learning techniques to 

tune the membership functions while keeping the semantics of 

the fuzzy logic controller intact.9  

  ANFIS architecture contain five layers, a circle represents 

the fixed node, while a square represents an adaptive node. To 

explain the ANFIS principle, two inputs x, y and one output z 

will be considered. Among many FIS models, the Sugeno fuzzy 

model is commonly used due to its high interpretability and 

computational efficiency, and built-in optimal and adaptive 

techniques.10 The fuzzy models use if–then principle for the 

rules. The rules for a first order Sugeno fuzzy model can be 

expressed as: 

 

Rule1 : if x is A1 and y is B1,then f1 = p1x+ q1y +r1 

Rule2 : if x is A2 and y is B2,then f2 =p2x+ q2y +r2               (2) 

 

  where Ai and Bi are the fuzzy sets in the antecedent, and pi, 

qi and ri are the design parameters that are determined during 

the training process.11 The ANFIS consists of five layers (Fig. 

3): 

 

Layer 1: Generate the membership grades 

 

Oi
1 =𝜇Ai(𝑥),𝑖=1,2 

 

Oi
1=𝜇Bi=2(𝑦),𝑖=3,4                             (3) 

 

where 𝜇Ai and 𝜇Bi can adopt any fuzzy membership function 

(MF). 

 

Layer 2: Every node in this layer calculates the firing strength of 

a rule via multiplication 

Oi
2=wi=𝜇Ai(𝑥)𝜇Bi(𝑦),𝑖=1,2                  (4) 

 

Layer 3: Normalize the firing strengths 

 

Oi
3=𝑤𝑖=

𝑤𝑖

𝑤1+𝑤2
,𝑖=1,2                         (5) 

 

Layer 4: In this layer, every node, i, has the following function: 

Oi
4=w̅i𝑓𝑖=w̅i(𝑝𝑖𝑥+𝑞i𝑦+𝑟i),𝑖=1,2            (6) 

 

  where wi  is the output of layer 3, and { pi , qi , ri } are the 

parameters to be set. The parameters in this layer are referred to 

as the consequent parameters. 

Layer 5: Computes the overall output as the summation of all 

incoming signals, which is expressed as: 

 

Oi
5=∑ w̅i𝑓𝑖

2
𝑖=1  =  

𝑤1𝑓1+𝑤2𝑓2

𝑤1+𝑤2
                        (7) 

 

  The output z in Figure 3 can be rewritten as, 12-15  

𝑓 = (𝑤1𝑥)𝑝1 +(𝑤1𝑦)𝑞1+ (𝑤1)𝑟1+ (𝑤2𝑥)𝑝2+ (𝑤2𝑦)𝑞2+(𝑤2)𝑟2 
(8) 

 

 
Figure 3  ANFIS Architecture 

 

 

  The ANFIS structure in this study is based on: 

1) The consequent part of fuzzy if-then rules is a linear 

equation by choosing a first order Sugeno model. 

2) Algebraic product is used as the T-norms operator to 

performs fuzzy AND. 

3) The training is done by using a sinusoidal wave as input 

signal to the transfer function model as shown in Figure 4 

4) The generalized bell functions are used as the input 

membership functions (MF) which can be expressed as: 

 

𝜇Ai(𝑥)=
1

1+|
𝑥−𝑐

𝑎
|
2𝑏                                  (9) 

 

  where a is half the width of the (MF), b (together with a) 

controls the slopes at the crossover points (where the MF value 

is 0.5) and c determines the center of the MF. 

  The computational time is reduced by using only one input 

and three rules is used, so that Equation (7) becomes 

 

f = (𝑤1𝑥)𝑝1+(𝑤1)𝑟1+(𝑤2𝑥)𝑝2+(𝑤2)𝑟2  
+(𝑤3𝑥)𝑝3+(𝑤3)𝑟3                                             (10)  
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Figure 4  Training data 

 

 

  The training algorithm requires a training set defined 

between inputs and output. Several inputs are used to get the 

suitable signal for the system training. Among which, the sine 

wave, in this case, is the best signal in order to get the training 

data (Figure 4). The parameters to be trained are a, b, and c of the 

premise parameters and p, q, and r of the consequent parameters 

(Figure 5–shows the resulted input membership functions from 

the training process, which have three memberships negative (N), 

zero (Z) and positive (P)). 
  The training data are used to train the ANFIS controller, as 

mentioned before. ANFIS toolbox in MATLAB/SIMULINK is 

used as the tool to design the controller. At first, the data is 

received from the workspace in MATLAB, then, the generalised 

bell membership function (MF) is used as the input MF type 

after examining different types such as triangular and 

trapezoidal MF. The output MF is Sugeno since it is the only 

type that ANFIS deals with. Three MFs are used for both the 

input and the output and they were optimized (The results are 

shown in Figure 5 and Figure 6 respectively). 

 

 
Figure 5  Input membership functions 

 

 
 

Figure 6  Output membership functions 

 

 

 

3.2  Receding Horizon Controller 

 

The receding horizon control is a model predictive control 

approach. In this type of control, the control law is calculated by 

solving an open-loop optimization problem for a fixed 

optimization window (prediction length), providing that the 

current states of the plant, x(ki), are available. This procedure is 

carried out for all iteration (for each sampling instant). Based on 

the plant model, the controller is able to predict the output for Ph 

(prediction horizon) steps in the future, and calculate the control 

trajectory for Ch (control horizon) steps in the future. The control 

horizon must be less than the prediction horizon because the 

current output is independent of the current control signal; that is 

the current control signal results in the next output (Figure 7–

illustrates the different signals and labels that are dealt with when 

using a discrete RHC). In other words, at time instant k, the 

output is predicted till (k+ Ph) steps providing that the optimal 

control signal is calculated for (k+ Ch) steps. 

       . 

 
 

Figure 7  A discrete RHC scheme 

 

 

  The principle of receding horizon states that even though 

the control trajectory is calculated for Ch steps in the future, 

only the first part of this trajectory is applied to the plant.16 At 

the next time instant (K+1), the output is predicted again for (k+ 

Ph) steps in the future, i.e. until (k+ Ph+1) and another 

optimization window is formed (The red-color window in Fig. 

7). The control trajectory is calculated as before for (k+ Ch), i.e. 

until (k+ Ch+1). This procedure is repeated for all coming time 

instants, and that is why it is called the receding Horizon 

Principle 

  There are many formulations for RHC, which can be a 

continuous-time or a discrete-time formulation for either linear or 

nonlinear systems. In this study, a linear discrete-time receding 

horizon controller is chosen since the transfer function of the 

system is linear. The formulation used for this controller is based 

on the formulation presented in L. Wang.17 The following is a 

guidance of the control law formulation. 

  The discrete-time state space model of the system is 

presented in (11), 

 

𝑥𝑚(𝑘+1)=𝐴𝑚 𝑥𝑚(𝑘)+𝐵𝑚𝑢(𝑘), 
𝑦(𝑘)=𝐶𝑚 𝑥𝑚(𝑘),                            (11) 

 

  By modifying the state space model, yields the following 

model in (12) which is to be used in the design of RHC 

controller. 
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[
∆𝑥𝑚(𝑘+1)

𝑦(𝑘+1)
]

⏞        

𝑥(𝑘+1)

= [
𝐴𝑚 𝑜𝑚

𝑇

𝐶𝑚 𝐴𝑚 1
]

⏞        
𝐴

[
∆𝑥𝑚(𝑘)

𝑦(𝑘)
]

⏞      
+

𝑥(𝑘)

[
𝐵𝑚
𝐶𝑚𝐵𝑚

]
⏞    
𝐵

∆𝑢(𝑘) 

𝑦(𝑘)=[𝑜𝑚
𝑇 1]⏞    
𝐶

[
∆𝑥𝑚(𝑘)

𝑦(𝑘)
]          (12) 

where, 

∆𝑥𝑚(𝑘)=𝑥𝑚(𝑘)−𝑥𝑚(𝑘−1); 
∆𝑥𝑚(𝑘+1)=𝑥𝑚(𝑘+1)−𝑥𝑚(𝑘); 

om=[0 0 ...0]
⏞      

𝑛

; 𝑛 is the order of the system. 

 

Let 𝑌=𝐹𝑥(𝑘𝑖)+∅∆𝑈 where, 

𝑌=

[
 
 
 
 
 
 
𝑦(𝑘𝑖+1 | 𝑘𝑖)

𝑦(𝑘𝑖+2 | 𝑘𝑖)

 𝑦(𝑘𝑖+3 | 𝑘𝑖)
.
.
.

𝑦(𝑘𝑖+𝑃ℎ | 𝑘𝑖)]
 
 
 
 
 
 

 ;∆𝑈=

[
 
 
 
 
 
 

∆𝑢(𝑘𝑖)

∆𝑢(𝑘𝑖+1)

∆𝑢(𝑘𝑖+2)
.
.
.

∆𝑢(𝑘𝑖+𝐶ℎ−1)]
 
 
 
 
 
 

;𝐹=

[
 
 
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

.

.

.
𝐶𝐴𝑃ℎ]

 
 
 
 
 
 

; 

 ∅=

[
 
 
 
 
 
 
𝐶𝐵 0 0 ... 0
𝐶𝐴𝐵 𝐶𝐵 0 ... 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 ... 0
. . .  .
. . .   .
. . .   .

𝐶𝐴𝑃ℎ−1𝐵 𝐶𝐴𝑃ℎ−2𝐵 𝐶𝐴𝑃ℎ−3𝐵 ...𝐶𝐴𝑃ℎ−𝐶ℎ𝐵]
 
 
 
 
 
 

 

where  ∆𝑢(𝑘𝑖+𝑗)  is the  future  control  movement  and       

 𝑗=0,1,…,𝐶ℎ. 
 

  Assuming that set-point is 𝑅𝑠
𝑇=[1 1 ...1]⏞      

𝑃ℎ

𝑟(𝑘𝑖), then the 

cost function 𝐽 for this control objective is defined as, 

 

𝐽= (𝑅𝑠−𝑌)
𝑇 (𝑅𝑠−𝑌) + 𝛥𝑈

𝑇𝑅 𝛥𝑈               (13) 

 

  where 𝑅=𝑟𝑤𝐼𝐶ℎ×𝐶ℎ and 𝑟𝑤 is used as tuning parameter by 

which the control signal is constrained more as it is increased.  

Minimizing the cost function, 
𝜕𝐽

𝜕∆𝑈
=0, yields the optimal 

control movement, 𝛥𝑈, which is to be added to the previous 

control signal. Equation (14) represents the control law for the 

RHC controller. 

 

𝛥𝑈= (∅𝑇∅+𝑅)−1∅𝑇(𝑅𝑠 𝑟(𝑘𝑖)−𝐹𝑥(𝑘𝑖)),
17        (14) 

 

  From (14), the matrices F and ∅ must be calculated so that 

the control movement is calculated after. Although 𝛥𝑈 is a 

vector that contains the future control movement, only the first 

element of this vector is applied to the plant. This is illustrated 

in the RHC algorithm flowchart (Figure 8). 

 

 
Figure 8  Flowchart of the RHC algorithm 

 

 

  In the design of this particular controller, the prediction 

horizon, Ph, is set to 4, the control horizon, Ch, is set to 3 and the 

tuning parameter, rw, is set to 1. If the performance is not 

enhanced a lot, it is not recommended to choose larger 

prediction horizon or control horizon as the size of both 

matrices F and ∅ will be increased and this will cost more time 

for the calculations and thus slower down the algorithm.  

  The position transfer function in Equation (1) is directly 

converted to state-space model as in Equation (15), 

 

[

𝑥1(𝑘+1)

𝑥2(𝑘+1)

𝑥3(𝑘+1)
 ]=[

1.1470−0.94340.5826
1 0 0
0 1 0

  ][

𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)
]+[
1
0
0
 ][𝑈(𝑡)] 

𝑦(𝑘)=[0.03300.04130.2105][

𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)
]+[0] [𝑈(𝑡)]       (15)     

 

  By applying the receding horizon algorithm, the matrices 

∅𝑇∅, ∅𝑇𝑅 and ∅𝑇𝐹 are calculated as detailed above. Next, the 

control signal movement trajectory (a vector with the size of Ch) 

is calculated using Equation (14). Only the first element of this 

vector is then added to the previous control signal and then 

applied to the plant at the current time instant. This procedure is 

repeated at each time instant.  

  To this point, the design of both controllers was covered. In 

the next section the results of both controllers are presented and 

compared. 
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4.0  RESULTS AND DISCUSSION  

 

In this section, the results of ANFIS, PI-ANFIS and the RHC 

controllers are presented, discussed and compared with PI and 

Pole-placement controllers in the work of A. A. M. Faudzi.8 

ANFIS position controller is implemented in 

MATLAB/SIMULINK (Figure 9). As seen, till now the ANFIS 

controller is applied to model without adding the proportional 

integral gain PI to test the exclusive response when using this 

controller. The input and the output membership functions (in 

Figure 5 and Figure 6) are loaded to the Neuro-fuzzy controller 

in the SIMULINK circuit (in Figure 9). The controller has one 

input which is the error and one output which is the resulted 

control signal to be sent to the plant directly. 

 

 
 

Figure 9  SIMULINK diagram for ANFIS position controller  
 

 

  The response of this controller (Figure 10) has a good 

settling time and a very small steady-state error. However, the 

overshoot percentage is significantly high; about 30%. 
 

 
 

Figure 10  ANFIS controller results 

 

 

  To improve the response of the ANFIS controller, a 

proportional integral PI controller has been added to the ANFIS 

controller (Figure 11(a)).  

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 11  SIMULINK diagram for (a) PI-ANFIS; (b) RHC 

       

 

  Likewise, the receding horizon controller is also 

implemented via SIMULINK (Figure 11(b)). As seen, the plant 

model is implemented in its discrete state-space form to have a 

direct feedback from the three states of the system. The 

controller’s inputs are the three states, the output signal, the 

reference signal and the previous control signal (to be added to 

the following control signal movement). This very MATLAB 

embedded function block contains the RHC algorithm and is 

executed at each time instant to calculate the current control 

signal and then send it to the plant. 

  The step response for PI-ANFIS and RHC controllers are 

shown in Figure 12. From Figure 12(a), adding the PI controller 

to the ANFIS controller significantly reduces the overshoot. 

Moreover, PI-ANFIS has faster response with settling time of 

0.15 s compared to RHC, which has a settling time of 0.25 s 

 

 
(a) 

 
Figure 12  Step response for (a) PI-ANFIS; (b) RHC 
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(a) 

 
(b) 

Figure 13  Sinusoidal response for (a) PI-ANFIS; (b) RHC 

 

 

  The controller’s abilities to track sinusoidal wave are 

shown in Figure 13. In this case, the PI-ANFIS perfectly tracks 

the reference compared to RHC whose response has a small 

delay between the output and the reference. 

  The controllers were further tested with multistep reference 

(Figure 14). Both controllers are able to track the reference 

within the operating range of the IPA. Still, the PI-ANFIS 

controller has better response than the RHC controller. 

  Finally, the step responses of the PI-ANFIS and the RHC 

controllers are further compared with the work of A. A. M. 

Faudzi8 in which PI and feedback controllers has been applied to 

control the position of the same plant (the IPA). (Table 1 - shows 

the comparison for step response for the four controllers). 

Although PI and feedback controllers shows 0% overshoot while 

this study shows 0.6% and 1.1% for RHC and PI-ANFIS 

controllers respectively, but this amount of overshoot is 

insignificant especially with the very short settling and rising 

time, and also with the very small percentage of the steady state 

error compared to PI and feedback controllers. 
 

 
(a) 

 
(b) 

Figure 14  Multistep response for (a) PI-ANFIS; (b) RHC 

 

 

 

Table 1  Comparison for step response position tracking 

 

Analysis PI Controller Feedback Controller RHC Controller PI-ANFIS Controller 

Overshoot (%OS) 0% 0% 0.6% 1.1% 

Settling time 4s 1.25s 0.25s 0.14s 

Rise time 2.05s 0.8s 0.085s 0.01s 

Steady state error 

(%ess) 
0.01% 0.01% 0% 0.003% 

 

 
5.0  CONCLUSION 

 

In this paper, PI-ANFIS and RHC controllers has been designed 

and analyzed for IPA position control. Unlike common fuzzy 

and Neuro-fuzzy controllers that usually comprise at least two 

inputs, the proposed Neuro-fuzzy controller has only one input, 

which is the error, and that reduce the computational time, 

which yields faster response. A significant amount of overshoot 

occurred as result of using single input and it was eliminated by 

adding PI controller to the ANFIS controller and resulted faster 

response as well.  

  PI-ANFIS is better in terms of settling and rise time. In the 

other hand, RHC has no steady state error and less overshoot. 

The results of both proposed controllers show significant 

improvement in the response over the widely used PI controller 

and also over the feedback controller. 

This study was conducted by MATLAB/SIMULINK. As a 

future work, real time controller will be conducted with the real 

IPA plant using the two proposed controllers. 
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