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ABSTRACT 

In this paper, we report the characteristic of heat 

transfer and fluid flow behavior in a cavity with 

differentially heated side walls. Dirichlet type of 

boundary conditions was considered for the bottom 

and top walls, which is perfectly conducting 

boundary conditions. Three numerical experiments 

were preformed in order to study these phenomena 

at different Rayleigh numbers. In current study, the 

governing Navier-Stokes equations were solved 

directly by using finite different formulation and 

indirectly by using lattice Boltzmann method. The 

results for this problem were compared well between 

these two approaches. Good agreement also found 

when the computed results were compared with 

those published in literature. 
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NOMENCLATURE 

 

cp Specific Heat 

k Heat conduction coefficient 

g Gravitational acceleration 

TH Hot wall temperature 

TC Cold wall temperature 

u Horizontal fluid flow velocity 

v Vertical fluid flow velocity 

 

 

1. INTRODUCTION  

The natural or free convection is the phenomenon of 

heat transfer between a surface and a fluid moving 

over it with the fluid motion caused entirely by the 

buoyancy forces that arise due to the density changes 

that result from the temperature variations in the 

flow. Since the early works by researchers (Lee et al., 

1969, Clifton et al 1969, Hassan et al.,1970, 

Hasanuzzaman et al, 2007) a great deal of theoretical 

and experimental researches was dedicated to 

investigate this phenomenon. The fundamental 

interest comes from the concern to understand the 

heat transfer mechanism (Qi et al., 2008, Azwadi et 

al., 2006, Laguerre et al., 2005) and fluid flow 

behavior around the surfaces (Ravnik et al., 2008, 

Yasin et al., 2009). On the other hand, a similar 

interest was provoked by the wide range of 

engineering applications utilizing this type of 

phenomenon (Kobus, 2005, Laguerre et al., 2009). 

Among the problems related to natural convection, 

many researchers focused their investigation on the 

heat transfer and fluid flow behavior from a 

differentially heated side walls in a cavity (Azwadi et 

al., 2007, Lo et al., 2007, Hasanuzzaman et al, 2009). 

They frequently considered adiabatic boundary 

condition for the top and bottom walls. However, 

very few investigated the effect of perfectly 

conducting top and bottom walls although it plays 

important roles in real engineering applications 

(Patrick et al., 1999). In present study, we carried out 

numerical investigation of natural convection in a 

square cavity by considering perfectly conducting 

boundary condition for top and bottom walls. The left 

and right walls were maintained at hot and cold 

temperature respectively. The aspect ratio is 

restricted to unity. The objective of this paper is to 

gain better understanding of heat transfer mechanism 

and fluid flow behavior for the case in hand. In order 

to do this, we carried out numerical investigation 

based on two approaches; the lattice Boltzmann and 

finite different methods.  

This paper is arranged as follow. The physics and the 

boundary conditions of the problem are firstly 

defined, followed by an explanation of the 

mathematical and numerical methods. Then, the 

results are presented and discussed. The last section 

concludes current study.  

 

2. PROBLEM PHYSICS AND BOUNDARY 

CONDITIONS 

The physical domain of the problem is represented in 

Fig. 1. The temperature difference between the left 
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and right walls introduces a temperature gradient in a 

fluid, and a consequent density difference induces a 

fluid motion, that is, convection. The top and bottom 

walls are considered made from a material that has a 

relatively high thermal conductivity. Therefore, it is 

usual to assume that the temperature on these walls 

varies linearly with distance from hot left to cold 

right walls.The Boussinesq approximation is applied 

to the buoyancy force term. With this approximation, 

it is assumed that all fluid properties can be 

considered as constant in the body force term except 

for the temperature dependence of the density in the 

gravity term. 

(1) 

 

where  is the thermal expansion coefficient,  is 

the acceleration due to gravity,  is the average 

temperature and  is the vertical direction opposite 

to that of gravity. 

  

                         

 

Figure 1.  Physical domain of the problem. 

The dynamical similarity depends on two 

dimensionless parameters: the Prandtl number Pr and 

Rayleigh number Ra, 

                                                  (2)                                                                        

                              (3) 

where ,  and  are the fluid kinematic 

viscosity, thermal diffusivity and width of the cavity 

respectively. 

In all simulations, Pr is set to be 0.71 and through the 

grid dependence study, the grid sizes of 101  101 

for Ra = 10
3
, 151  151 for Ra = 10

4
 and 201  

201 for Ra = 10
5 
are found to be sufficient.  

3.  NUMERICAL MODELS 

In this study, the governing equation of 

incompressible, two-dimensional and laminar 

Navier-Stokes and energy equations were solved 

directly using stream function-vorticity finite 

difference formulation and indirectly using lattice 

Boltzmann approach.  

3.1 Stream function-vorticity finite differet 

approach 

The conservation equations for this problem can 

be written as: 

                                       (4) 

   (5) 

                                                             (6) 

       (7) 

The pressure terms are eliminated by taking the y-

derivative of (6) and subtracting from it the x-

derivative of (5). This gives 

 

(8) 

Using the definition of vorticity and continuity 

equation, (8) can be written as: 

      (9) 
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In terms of the stream function, this equation 

becomes 

       

(10)

 
In terms of the stream function, the equation 

defining the vorticity becomes 

                                (11) 

while in terms of the stream function, the energy 

equation becomes 

       

(12) 

Before considering the numerical solution to the 

above set of equations, it is convenient to rewrite the 

equations in terms of dimensionless variables. The 

following dimensionless variables will be used here: 

                        (13) 

In terms of these variables, (9), (10) and (11) 

becomes  

     

(14) 

                                  (15) 

                 (16) 

Finally, (14), (15) and (16) are solved using an 

iterative, uniform mesh finite different solution 

procedure with second order spatial accuracy.  

 

3.2 Lattice Boltzmann Approach 

As an alternative approach, the thermal fluid flow 

governing equations are solved indirectly using 

lattice Boltzmann method (LBM). Unlike other 

numerical methods, LBM predicts the evolution of 

particle distribution function and calculates the 

macroscopic variables by taking moment to the 

distribution function. LBM starts with the Boltzmann 

equation, discretised in space and time, given as: 

    

  

(17) 

  

          (18) 

where distribution function  is used to calculate 

density and velocity fields and distribution function 

 is used to calculate temperature field.  is the 

external force and  and  are the relaxation 

times carried by the momentum and energy 

respectively.  

The equilibrium distribution functions  and 

 are chosen so that they satisfy the macroscopic 

equations ((4), (5), (6) and (7)) via Chapman-Enskog 

expansion. They can be written as (Azwadi et al., 

2008): 

  

 (19) 

 

 (20) 

The values of the weight  depend on the chosen 

lattice model. In present study, we chose nine-

velocity lattice model to represent both the  and  

distribution functions. The lattice configuration is 

shown in Fig. 2.  
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Figure 2.  Nine-velocity lattice model with w1 = 

4/9, w2,3,4,5 = 1/9 and w6,7,8,9 = 1/36. 

The macroscopic variables such as density, velocity 

and temperature can be calculated by taking moment 

to the distribution functions as follow: 

  

(21) 

The time relaxations can be related to the 

macroscopic fluid kinematic viscosity and thermal 

diffusivity using the following equations: 

                                         (22) 

                                     (23). 

 Via the so-called Chapmann-Enskog expansion, the 

evolution equations of distribution function could 

recover the macroscopic governing equations up to 

second order accuracy in space and time.  

 

4.  RESULTS AND DISCUSSION 

In the previous section, we have discussed two 

numerical approaches to predict the phenomenon of 

natural convection in a square cavity. In this section, 

we shall apply the methods and demonstrate the 

obtained results in terms of the Nusselt number when 

the top and bottom walls are firstly set at adiabatic 

boundary condition. The benchmark results for two 

dimensional (Davis, 1983) and three dimensional 

(Tric et al., 2000) cases are brought for the sake of 

code validation. Then the comparison of the two 

approaches will be made in terms of isotherms plots 

and computed average Nusselt number in the system 

with the perfectly conducting boundary conditions 

applied at the top and bottom walls. Finally, the 

streamlines and contour of velocity components are 

plotted to demonstrate the effect of Rayleigh number 

on the fluid flow behavior.   

Table 1. Comparison of average Nusselt number for 

natural convection heat transfer phenomenon 

 Ra = 10
3
 Ra = 10

4
 Ra = 10

5
 

FD Approach 1.118 2.224 4.420 

LBM 1.117 2.236 4.549 

2-D solution 1.116 2.234 4.510 

3-D solution 1.087 2.100 4.361 

 

Table 1 shows the comparisons among the LBM and 

finite different approaches described in the previous 

sections, and two-and three-dimensional (2D and 3D) 

solutions to the Navier-Sokes equations. As can be 

seen from the table, the results predicted by the finite 

different and lattice Boltzmann methods generally 

compare well with the previous studies. There are 

some small differences between the results using 

finite different method for high Rayleigh number. 

However, these discrepancies are within three 

percents and can be accepted in real engineering 

applications.  

From Table 1, we can see that for Ra = 10
3
, the 

average Nusselt number is around 1.117, while for 

the 3D cubic cavity, the average Nusselt number is 

1.087. The 3D result of the average Nusselt number 

is smaller than that in the two dimensional case, 

which shows the effect of the side walls. The same 

trend is applied to Ra = 10
4
 and Ra = 10

5
. 

 

 

Figure 3.  Normalised temperature profile at mid-

height of the cavity. 
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Fig. 3 shows the normalized temperature profile 

given at the mid-height of the cavity for the laminar 

flow simulations with perfectly conducting boundary 

condition. The profiles show the rapid change in the 

heat transfer mechanism from conduction to 

convection. From a 45
0
 slope at low Rayleigh 

number, the temperature profiles become horizontal 

lines in the cavity center and all temperature 

gradients are located in the interior of the boundary 

layer, which has developed near the vertical walls. 

Near the center of the cavity, the curves change slope 

and there is a vortex corresponding to its changes. It 

can be clearly seen that the steep variation of the 

temperature near the walls is resolved quite well. 

Table 2 shows the average Nusselt number computed 

by finite different and lattice Boltzmann methods. 

Good agreement can be seen for the whole range of 

Rayleigh numbers. Compared to the results tabulated 

in Table 1, smaller value of computed average 

Nusselt number can be seen due to the heat release 

through the top and bottom walls for this case. 

Table 2. Comparison of average Nusselt between 

finite different and lattice Boltzmann methods 

 Ra = 10
3
 Ra = 10

4
 Ra = 10

5
 

FD Approach 1.046 1.766 3.489 

LBM 1.056 1.907 3.517 

 

The comparison of results obtained from the lattice 

Boltzmann and finite difference formulation is 

demonstrated in Fig. 4, which represents the plots of 

isotherms for every Rayleigh number.  

   

         (a) Ra = 10
3             

(b) Ra = 10
4
 

 

(c) Ra = 10
5
  

Figure 4.  Isotherms plot for every Rayleigh 

numbers; coloured lines (finite difference), black 

lines (lattice Boltzmann). 

As can be seen from Fig. 4, results from the lattice 

Boltzmann and finite different algorithms are in very 

good agreement for a wide range of Rayleigh 

number. 

At Ra = 10
3
, the isotherms are parallel to the heated 

walls, indicating that most of the heat transfer is by 

heat conduction. As the Rayleigh number increases 

(Ra = 10
4
), the effect of convection can be seen in the 

isotherms where they become horizontal line at the 

center of the cavity. At Ra = 10
5
, thin temperature 

boundary layer can be seen near both sides of the 

vertical walls. The system mostly occupied by 

horizontal isotherms indicating that the convection 

dominates the mode heat transfer mechanism. 

 
(a) Ra = 10

3              
 (b) Ra = 10

4
 

 
(c) Ra = 10

5
 

Figure 5.  Streamline plots for various Rayleigh 

numbers. 
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Fig. 5 shows the streamlines plot for various values 

of Rayleigh number obtained from lattice Boltzmann 

method. Similar patterns are observed for those from 

the stream function-vorticity finite different 

formulation (not shown). They show that the hot 

fluid rises near to the hot left wall until it reaches the 

top wall, then moves along the horizontal wall before 

moving downwards along the right wall under the 

effect of cooling. 

 

At Ra = 10
3
, streamlines are those of a single vortex 

with its center in the center of the system. As the 

Rayleigh number increases (Ra = 10
4
), the central 

streamline is distorted into an elliptic shape due to 

higher flow velocity along the top and bottom walls. 

At Ra = 10
5
, the central streamline is elongated and 

two secondary vortices appear inside it. These 

vortices pointing towards the corners due to high 

magnitude of flow velocity drags the outer vortex 

along the vertical walls of the enclosure.  

 

 
(a) Ra = 10

3           
(b) Ra = 10

4
 

 
 (c) Ra = 10

5 
 

Figure 6.  Contour plots for horizontal velocity 

components. 

 

Contour plots for horizontal and vertical velocity 

components are shown in Fig. 6 and Fig. 7 

respectively. From these figures, we can see that, as 

we increase the Rayleigh number, the isoline getting 

denser and denser near the walls. This indicates that 

the velocity maximum moves closer to the wall and 

its amplitude increases. 

 
           (a) Ra = 10

3              
(b) Ra = 10

4
 

 
 (c) Ra = 10

5 
 

Figure 7.  Contour plots for vertical velocity 

components. 

  

5. CONCLUSSION 

The natural convection in a differentially heated 

square cavity has been studied using finite different 

and lattice Boltzmann approaches. In finite different 

formulation, the Navier-Stokes equations were 

transformed into stream function-vorticity 

representation to reduce the number of unknown 

variables and hence reduce the computational time. 

In lattice Boltzmann formulation, the governing 

equation is solved using Lagrangian approach for the 

evolution of particles distribution function. Even 

though lattice Boltzmann approach required more 

computational time, however, due to the mesoscopic 

nature of the numerical analysis, this method 

contribute excellent numerical accuracy compared to 

other conventional numerical methods.  

From Fig. 3 to Fig. 7, the boundary layers for the 

velocities and temperature can be observed clearly. 

As expected, the thermal boundary layer getting 

thinner and thinner as the Rayleigh number increases. 

The flow pattern including the boundary layers and 

vortices can be clearly seen. The heat transfer 

mechanism is also significantly influenced by the 

value of Rayleigh number. The results obtained 

demonstrate that the stream function-vorticity finite 

different and lattice Boltzmann formulations are 

reliable approaches to study flow and heat transfer in 

a differentially heated square enclosure. 
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